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Abstract 
Personality traits describe stable differences in how individuals think, feel, and behave and how 
they interact with and experience their social and physical environments. We assemble data from 
46 cohorts including 611K-1.14M participants with European-like and African-like genomes for 
genome-wide association studies (GWAS) of the Big Five personality traits (extraversion, 
agreeableness, conscientiousness, neuroticism, and openness to experience), and data from 51K 
participants for within-family GWAS. We identify 1,257 lead genetic variants associated with 
personality, including 823 novel variants. Common genetic variants explain 4.8%-9.3% of the 
variance in each trait, and 10.5%-16.2% accounting for measurement unreliability. Genetic 
effects on personality are highly consistent across geography, reporter (self vs. close other), age 
group, and measurement instrument, and we find minimal spousal assortment for personality in 
recent history. In stark contrast to many other social and behavioral traits, within-family GWAS 
and polygenic index analyses indicate little to no shared environmental confounding in genetic 
associations with personality. Polygenic prediction, genetic correlation, and Mendelian 
randomization analyses indicate that personality genetics have widespread, potentially causal 
associations with a wide range of consequential behaviors and life outcomes. The genetic 
architecture of personality is robust and fundamental to being a human.  
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Introduction  
Personality is defined by relatively stable patterns of thinking, feeling, and behaving that 

vary across individuals (Roberts and Yoon, 2022). Decades of research have demonstrated that 
human personality can be meaningfully and efficiently summarized by five broad trait factors 
known as the Big Five: Extraversion (which encompasses traits such as sociability, assertiveness, 
and energy level), agreeableness (compassion, respectfulness, and trust), conscientiousness 
(organization, productiveness, and responsibility), neuroticism (anxiety, depression, and 
volatility) and openness to experience (imagination, curiosity, and aesthetic sensitivity) (John et 
al., 2008; Matthews et al., 2009; Soto & John, 2017). The Big Five predict academic 
performance and educational attainment, labor market outcomes, and career choices, at 
comparable levels to cognitive ability and socioeconomic status (Anni et al., 2024; Borghans et 
al., 2016; Bucher et al., 2019; Deary et al., 2010; Hampson, 2012; Roberts et al., 2007; Soto, 
2019). They relate to a wide range of health behaviors, such as eating habits, drug use, and 
physical activity (Bogg & Roberts, 2004; De Moor et al., 2006; Hampson et al., 2007; Willroth 
et al., 2023) and to disease burden (Yoneda et al., 2023) and longevity (Beck & Jackson, 2022; 
Graham et al., 2017). The Big Five are so closely linked to mental health that modern 
taxonomies of psychopathology are foundationally informed by patterns of personality trait 
variation (Kotov et al., 2010; Widiger et al., 2019). And they predict relationships and social 
behavior (Antonoplis & John, 2017; Landis, 2016), residential mobility (Jokela, 2020, Jokela et 
al., 2015), and political preferences (Duckitt & Sibley, 2010). Given the fundamental relevance 
of personality to core phenomena studied across scientific disciplines, understanding the 
molecular genetics of personality is crucially important for developing biopsychosocial models 
of both human behavior and life outcomes. 

 
Here we report results from the Revived Genomics of Personality Consortium (ReGPC), 

a collaboration across 46 cohorts incorporating between 611K and 1.14M participants with 
European-like (EUR) and African-like (AFR) genomes (National Academies of Sciences, 
Engineering, and Medicine, 2023) per Big Five trait. This effort represents a substantial boost in 
statistical power for genetic discovery over past personality GWAS efforts, increasing the 
number of significant loci relative to most recent work (Gupta et al., 2024) from 3 to 131 for 
conscientiousness, 4 to 39 for agreeableness, 8 to 126 for openness to experience, 14 to 258 for 
extraversion, and 224 to 703 for neuroticism. Though personality traits often vary on average 
across groupings of people (Bleidorn et al., 2022; Ebert et al., 2022), we find that the genetic 
etiology of each trait is highly consistent across geography, reporter perspective (self vs. close 
other), age, and measurement instrument. We empirically confirm the strong relationship 
between a measurement’s internal consistency and its heritability; after accounting for 
measurement error, heritability estimates for the Big Five are substantially greater. We report 
results of within-family GWAS of the Big Five in over 50K participants, which allow us to parse 
genetic effects from environmental confounds. We find that the genetic architecture of the Big 
Five is only minimally confounded by population stratification, dynastic, and assortative mating 
effects that commonly bias GWAS of other behavioral traits (Howe et al., 2022; Tan et al., 2024; 
Young et al., 2022). Polygenic indices (PGIs) constructed from each primary GWAS robustly 
predict personality in five independent cohorts, with no identifiable reduction in predictive 
accuracy when compared within families. Across the Big Five, common variant heritability 
estimates are largely indistinguishable when estimated using within-family vs. population 
GWAS, and population-level and within-family genetic effects are highly genetically correlated 
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(mean rg = .86). We characterize the functional genomics of each of the Big Five and provide 
evidence of negative selection on the genetics of personality. Finally, we extensively characterize 
personality’s wide-ranging genetic correlates and consequences across social relevant behaviors 
and life outcomes ranging from psychopathology and physical health to research participation 
and residential mobility, highlighting a central role of personality genetics in understanding the 
human experience. 
  

Results  
Population-level Association Meta-Analysis  

We performed population-level GWAS meta-analysis of each Big Five trait in genetic-
similarity-stratified and genetic-similarity-combined cohorts of EUR (k = 46) and AFR (k = 10) 
participants. In each cohort analysts conducted GWAS of each available Big Five measurement 
instrument using a standard protocol across the 22 autosomes and, when available, the X-
chromosome (Supplementary Tables S1-S3). We jointly analyzed results using inverse-
variance weighted meta-analysis, resulting in pooled associations for ~ 10 million Single 
Nucleotide Polymorphisms (SNPs) for each Big Five trait. 
  

We identified 1,257 approximately independent (r2 < .10 within a 250kb range) genome-
wide significant (GWS; p < 5×10-8) SNPs associated with the Big Five traits, an increase of 3 to 
43 times over the most recent findings for each trait (Table 1; Supplementary Tables S4-S11). 
Of these lead SNPs, 823 (65%) were found in novel loci not previously associated with variation 
in the respective trait. Manhattan plots of these results are displayed in Figure 1 A-E. 
Demonstrating the independence between the Big Five, 82% of genomic loci containing a GWS 
SNP were associated with only a single trait (Supplementary Table S12), and the average 
absolute genetic correlation among Big Five traits among EUR participants was .19 (Figure 1 
F), which is similar to estimates of phenotypic correlations (Soto & John, 2017). 
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Table 1. Summary of Population-Level Genome-Wide Association Study Results 
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Extraversion 662,617 
(43,201) 1.59 17 258 1.00/1.01 9.3% (0.3) 10.6% (1.3) 16.2% (1.0) .90 .93 .92 .84 1.00 

Agreeableness 611,037 
(43,482) 1.29 4 39 1.02/1.00 4.8% (0.2) 7.4% (1.0) 10.5% (1.0) .65 .68 .95 .73 .70 

Conscientiousness 641,167 
(43,120) 1.45 3 131 1.03/1.02 7.1% (0.2) 7.9% (1.0) 11.0% (1.0) .86 .90 .68 .80 .79 

Neuroticism 1,136,711 
(48,110) 2.02 224 703 0.99/1.02 8.3% (0.3) 8.4% (0.8) 12.0% (0.8) .99 .97 .77 .84 .74 

Openness to 
experience 

611,985 
(43,498) 1.43 8 126 1.03/1.01 7.4% (0.3) 9.4% (1.6) 14.5% (1.2) .92 .82 .87 .78 .88 

Note. h2
SNP = Single Nucleotide Polymorphism (SNP) heritability. EUR = Individuals with European-like genomes. AFR = Individuals with African-like 

genomes. RE-meta = random-effects meta-analysis of cohort-specific h2
SNP estimates. LDSC = Linkage Disequilibrium Score regression. Measurement 

ins. = Measurement instrument. Lead SNPs = number of genome-wide significant SNPs (p < 5×10-8) that are independent (Linkage Disequilibrium r2 < 
.10) of other lead SNPs. Prev. = lead SNPs identified in Gupta and colleagues (2024) across all analyses. h2

SNP and genetic correlations were estimated 
using data from EUR samples using LDSC. Numbers in parentheses represent standard errors. Genetic correlations across geographic regions span US, 
continental Europe, Nordic, UK/Australia; correlations across age groups span younger (age ≤ 25), midlife (25-64) and older adults (65+). 
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Figure 1. Manhattan plots of Genome-Wide Associations for each Big Five personality trait 
(A-E) and genetic correlations across traits (F). Genome wide significance is denoted with a red line 
at p = 5×10-8. A selection of genes containing or nearby the most significant lead SNPs are annotated in each 
panel (Supplementary Tables S23-S27). Genetic correlations in panel F were estimated among EUR 
participants using LDSC; standard errors are in parentheses. 
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Genetic variants with previously reported significant Big Five associations evinced a high 

replication rate: 207 of 246 (84%) lead SNPs identified in the most recent Big Five GWAS, 
which partially overlapped with the present GWAS sample, were found in the same locus as a 
significant variant in this study (Gupta et al., 2024; Supplementary Table S13). Individual SNP 
effects were extremely small, reflecting personality’s highly distributed genetic architecture. For 
example, the median association estimate among extraversion lead SNPs, corrected for the 
winner’s curse (Forde et al., 2023), is .009 SD per effect allele (corresponding to scoring at the 
50.35th vs 50th percentile in extraversion). Genetic effects on personality were especially strongly 
dispersed, as indicated by Linkage Disequilibrium (LD) Fourth Moments Regression (O’Connor 
et al., 2019). On average, the estimated effective number of independently associated common 
SNPs for each trait was 16,180 (Supplementary Table S14); Extraversion, agreeableness, 
conscientiousness, and openness to experience were each estimated to be as or more polygenic 
than 31 of the 32 biobehavioral phenotypes compared in O’Connor and colleagues (2019), 
including schizophrenia liability and smoking status. We present additional GWAS results, 
including genetic ancestry-stratified analyses, Supplementary Figures S1-S10 and 
Supplementary Tables S15-S16. 

  
Characterizing Common-Variant Heritability  

Among EUR participants, SNP heritability (h2SNP) estimated for the Big Five traits using 
LD Score Regression (LDSC; Bulik-Sullivan et al., 2015) ranged from 4.8% (SE = 0.2%) for 
agreeableness to 9.3% (SE = 0.3%) for extraversion (Table 1; Supplementary Table S4). 
Importantly, these SNP heritability estimates from GWAS meta-analysis incorporate genetic 
effects that are consistent across contributing cohorts. To allow for variability in genetic effects 
across cohorts, we conducted a random-effects meta-analysis of cohort-specific h2SNP estimates, 
which indicated an average h2SNP of 8.6% (SE = 0.6%) across traits (ranging from 7.4% for 
agreeableness to 10.6% for extraversion; Table 1; Supplementary Table S17), with significant 
variability across cohorts (mean τ = 3.6%). 

 
h2SNP is expected to vary as an inverse function of the measurement error in the 

measurement instrument used (Spearman, 1910; Tucker-Drob, 2017). We confirmed this to be 
the case using a weighted meta-regression in which we regressed cohort-level h2SNP on 
Cronbach’s alpha (which indexes a measure’s internal consistency on a scale of 0-1), allowing 
for random intercepts to account for nesting of trait estimates within cohorts. Across all traits, we 
found that personality measures with greater internal consistency tended to be much more 
heritable (b = 6.7%, SE = .7%; Supplementary Figure S11). In this analysis, the expected h2SNP 
for an error-free personality measure ranged from 10.5% for agreeableness (SE = 1.0%) to 
16.2% for extraversion (SE = 1.0%; Table 1).   
  

Biological follow-up of GWAS signal using MAGMA (de Leeuw et al., 2015) indicated 
that enriched gene-sets intersected across the Big Five (mean enrichment rank-order ρ = .72; 
Supplementary Figures S12-S17), providing evidence for trait-overlapping molecular and 
cellular systems in personality neurobiology despite only modest genetic correlations (Figure 1 
panel F). Consistent with theories of personality development that emphasize the prefrontal 
cortex (Casey & Caudle, 2013; Romer et al., 2017), genetic associations for each Big Five trait 
except agreeableness were enriched in genes expressed in the prefrontal cortex (among these, our 
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top lead SNPs implicate RCE1, FOXP2, and SEMA6D, indicated in Figure 1; Supplementary 
Tables S18-S27). Each of the Big Five demonstrated strong enrichment in protein truncating 
variant intolerant gene-sets specifically expressed in neurons (e.g., ARNTL, TCF4, NEGR1; 
Figure 1). This pattern, which has also been found for psychiatric disorders and cognitive 
function (Grotzinger et al., 2022a; Grotzinger et al., 2025), suggests personality-relevant variants 
are under negative selection, which appears inconsistent with evolutionary theories that posit 
balancing selection mechanisms as responsible for maintaining genetic variation in personality 
(Penke & Jokela, 2015). Neurobiological theories of the Big Five posit dopaminergic etiology to 
variation in openness to experience and extraversion, and serotonergic etiology to variation in 
conscientiousness, neuroticism, and agreeableness (Carver & Miller, 2006; DeYoung et al., 
2021; Depue & Collins, 1999). Based on sets of genes differentially expressed in specific brain 
cell types, both in mouse and human post-mortem tissues, we found little support for these 
hypotheses across trait-stratified tests: genes differentially expressed in several types of 
dopaminergic and serotonergic neurons were in some cases (nominally) significantly enriched 
for specific outcomes but neither the effect size or p-value placed them among the most enriched 
neuron types (Supplementary Tables S18-S22), suggesting their prominence in the literature 
relative to other types of neurons is not warranted. 

 
To further characterize the generalizability of genetic effects on personality, we examined 

the concordance of genetic signal across geography, age, veteran status, measurement 
instrument, and reporter perspective. We clustered cohorts by these grouping variables, re-
estimated GWAS meta-analyses within balanced subgroups, and estimated genetic correlations 
between subgroups using LDSC (Table 1; Supplementary Figures S18-S22). We found that 
genetic effects were highly similar across four western country clusters (United States, 
Continental Europe, Nordic, and United Kingdom/Australia, mean rg = .86), three age groups 
(young [≤25], middle [25-64] and older [65+], mean rg = .80), between Million Veteran Program 
participants and other cohorts (mean rg = .80), and across four personality measurement 
instruments (mean rg = .89). Additional characterization of genetic architecture across 
measurement instruments using Genomic Structural Equation Modeling (Grotzinger et al., 2019) 
confirmed that genetic effects plausibly operate at the level of instrument-general latent factors, 
with only one locus (associated with both higher extraversion and lower neuroticism) 
demonstrating significantly heterogenous effects across measurement instruments 
(Supplementary Tables S28-S30, Supplementary Figures S23-S29). Notably, correlations 
across geography and measurement instrument were lower for agreeableness than the other Big 
Five (Table 1). This greater heterogeneity explains in part why agreeableness exhibited lower 
heritability than other traits in the combined meta-analytic GWAS: its genetic effects are less 
consistent across cohorts. In the Estonian Biobank, where participants’ personality was assessed 
both by their self-report (N = 73,983) and reports of close others (N = 20,269), we found a high 
degree of genetic overlap between rater perspectives (mean rg = .84), providing strong evidence 
that the genetic architecture of personality is not a simple epiphenomenon of self-perception. 
 
Polygenic Prediction of Personality  

Past efforts to predict personality from polygenic indices (PGIs) have been hampered by 
low power of the discovery GWAS used to estimate prediction weights (Becker et al., 2021). 
Here, we capitalized on the very large sample sizes of our EUR discovery GWAS to estimate 
weights for PGIs using SBayesR (Lloyd-Jones et al., 2019). PGIs were then tested in five 
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independent cohorts (holding the cohort out from discovery GWAS when there was sample 
overlap). In all five cohorts, PGIs predicted significant additive variance in their respective 
phenotypic personality trait score among EUR participants, after controlling for sex, age, age2, 
and 10 ancestral principal components (extraversion Mβ = .19, range = [.16, .23]; agreeableness 
Mβ = .10, range = [.07, .14]; conscientiousness Mβ = .16, range = [.12, .18]; neuroticism Mβ = 
.16, range = [. 10, .18]; openness to experience Mβ = .17, range = [.15, .23]; Figure 2A). These 
estimates approximate mean R2 values ranging from 1.0% for agreeableness to 3.6%, for 
extraversion. These estimates represent an improvement in prediction over past research (Gupta 
et al., 2024) for all traits besides agreeableness. Further, highly consistent estimates across 
cohorts indicates a limited role of birth year, nationality, and ascertainment method in prediction 
accuracy. 

  
We also predicted personality traits among AFR participants in the Add Health and HRS 

cohorts, again using weights constructed from the highly powered EUR GWAS. PGI prediction 
is expected to substantially decrease when there are differences in genetic ancestry between 
discovery and target samples (Wang et al., 2023). Nevertheless, PGIs significantly predicted 
extraversion across both cohorts, and neuroticism in HRS (p < .01; Figure 2A), providing the 
first evidence for significant PGI prediction of personality traits beyond EUR individuals. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2025. ; https://doi.org/10.1101/2025.05.16.648988doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.16.648988
http://creativecommons.org/licenses/by-nc-nd/4.0/


BIG FIVE GWAS 12 

 
Figure 2. Polygenic prediction and additional genetic associations. Ext = Extraversion. Agr = 
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Agreeableness. Con = Conscientiousness. Neu = Neuroticism. Ope = Openness to Experience. Panel A depicts 
standardized prediction of phenotypic personality trait scores among EUR and AFR participants in five cohorts 
using PGI weights derived from the EUR population-level GWAS. In panel B, betas for continuous traits are 
standardized and have point estimates depicted with circles, and betas for binary traits are logistic betas and 
have point estimates depicted with diamonds; percentage affirmative responses are noted in parentheses. † = 
questions asked only among a subgroup of participants (see Supplementary Text). Panel C depicts correlations 
between PGIs for each pair of family members. ‡ = Educational Attainment estimates come from Torvik et al. 
(2022), estimated across spouses in the MoBa cohort. In panel D, accelerometer activity indexes physical 
movement across a 24-hour period; see Grotzinger et al. (2022b) for complete details. Panel E depicts 
associations between PGI and census area of residence at age 50+, controlling for birthplace in addition to sex, 
age, array, and genetic principal components. Only associations that are significant at p < .01 after application 
of Benjamini-Hochberg false-discovery rate correction and sign-concordant within sibship are plotted. In all 
panels, error bars depict 95% confidence intervals. * = p < .01.  
 
Associations with Socially Relevant Behaviors and Important Life Outcomes  

Building on epidemiological and longitudinal research that has demonstrated the breadth 
of personality’s associations, we quantified the widespread relevance of personality genetics to a 
plethora of socially relevant behaviors and important life outcomes (Bleidorn et al., 2019; 
Roberts et al., 2007; Soto, 2019; Wright et al., 2023) across tests of genetic correlation, PGI 
prediction, and Mendelian Randomization (MR) applied to EUR GWAS data. Results for AFR 
GWAS data are reported in the Supplementary Text and Supplementary Figures S30-S31.    

 
  Genetic correlations 

Genetic correlations estimated using LDSC indicate widespread genetic sharing between 
personality traits and health-relevant daily behaviors. Conscientiousness in particular was linked 
to reduced substance use, greater sports participation, and greater preference for low-calorie 
foods, as well as the downstream consequences of these behaviors: fewer spells in the hospital, 
healthier aging, and lower BMI (Figure 3; Supplementary Tables S31-S32). Personality was 
also genetically correlated with fluctuations in accelerometer-measured behavior across the day, 
with openness to experience linked to increased night-time activity and conscientiousness to 
increased activity during the day (Figure 2D; Guerreiro et al., 2024).  
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Figure 3. Genetic correlations between the Big Five personality traits and 67 behaviors and 
outcomes across 9 domains. E = Extraversion. A = Agreeableness. C = Conscientiousness. N = 
Neuroticism. O = Openness to experience. COVID = Coronavirus disease. HDL = High-density lipoprotein. 
LDL = Low-density lipoprotein. ADHD = Attention deficit hyperactivity disorder. Letters corresponding to 
personality traits represent correlation point estimates. Error bars represent 95% confidence intervals. 
Associations not significant at p < .01 are depicted in gray. Associations estimated using LDSC among EUR 
participants. Full description of each behavior and outcome are available in Supplementary Tables S31 and 
S32. 
  

We found substantial genetic correlations between the Big Five and diagnosis liability for 
each of 10 psychiatric disorders and 4 transdiagnostic psychiatric disorder factors (Figure 3). 
Genetic profiles associated with neuroticism were associated with increased risk to all forms of 
psychopathology, particularly internalizing disorders, whereas genetic profiles associated with 
agreeableness displayed cross-cutting protective associations (Lo et al., 2017). We also identified 
broad patterns of genetic sharing between openness and psychopathology, which are notably 
discrepant from the small and inconsistent associations commonly reported in phenotypic 
research (Kotov et al., 2010; Widiger & Crego, 2019). Many other personality-psychopathology 
associations were specific and differentiated: Extraversion genetics were associated with lower 
risk for internalizing disorders but greater risk for neurodevelopmental disorders, and 
conscientiousness genetics were associated with lower risk for neurodevelopmental disorders but 
greater risk for compulsive disorders. These findings provide strong support for the close 
connection between personality traits and psychiatric disorders posited in psychiatric nosologies 
(Kotov et al., 2017).  

 
Investigation of genetic correlations between personality traits and survey behavior in the 

UK Biobank indicated that personality plays a major role in research participation (Figure 3). In 
particular, genetic variants associated with openness to experience and agreeableness were 
associated with completing optional questionnaires, whereas genetic variants associated with 
neuroticism were associated with fewer questionnaire responses, more “I don’t know” and 
“prefer no response” answers, and higher rates of nonresponse after beginning a questionnaire. 
The genetics of personality may thus have a widespread, underacknowledged influence on 
sample composition and responses in published research that relies on survey data. 

 
PGI prediction of behaviors and outcomes 
We examined PGI prediction of interviewer-rater qualities and delinquency, novel 

attributes that have not been examined in GWAS, in the Add Health cohort, a representative 
sample of young US adults (N = 5,110). We found that personality PGIs predicted how a young 
adult was perceived by their in-person interviewer during data collection (Figure 2B; 
Supplementary Table S33): Those with PGIs reflecting lower neuroticism and higher 
extraversion, agreeableness, and openness to experience were perceived to have a more attractive 
personality, and those with PGIs reflecting higher agreeableness and conscientiousness were 
perceived to be more well-groomed. In a subsample of at-risk Add Health participants, 
personality PGIs were associated with delinquent behavior and intergenerational contact with the 
prison system, (Figure 2B; Supplementary Table S33): high polygenic propensity for 
neuroticism and low polygenic propensity for agreeableness were associated with school 
suspension, running away from home, and ever pulling a knife or gun on another person.  
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Our socio-demographic analysis of UK Biobank participants (N = 419,261) linked 
personality PGIs to the characteristics of one’s residence in later adulthood, controlling for place 
of birth to reflect residential mobility. Focusing only on results that were significant in 
population-level analyses and sign-concordant in within-family analyses, genetic profiles 
indicative of higher openness to experience predicted moving into cosmopolitan professional 
areas and away from suburbia and challenged neighborhoods by middle-older adulthood (age 
50+), whereas genetic profiles indicative of higher conscientiousness predicted moving away 
from cosmopolitan areas and into affluent suburban communities (Figure 2E, Supplementary 
Figures S32-S33). We present additional residential mobility analyses focused on urban/rural 
migration in the Supplementary Text and Supplementary Figure S34. 

  
We also quantified personality similarity between spouses over recent generations. To do 

this, we estimated two PGIs from approximately balanced, non-overlapping halves of the  
GWAS discovery sample for each Big Five trait. We analyzed these halves with latent variable 
modelling to estimate genetic correlations among pairs of relatives that correct for PGI 
estimation error (Supplementary Figure S36; Supplementary Table S34). Spousal similarity 
is expected to induce genetic correlations on assorted traits among offspring that depart from 
their genetic relatedness, which can bias heritability estimates in standard population-based 
GWAS (Border et al., 2021; Horwitz et al., 2023). Inferred genetic correlations between parents, 
estimated using error-corrected PGI similarity meta-analyzed across spouses, sibling pairs, and 
cousin pairs from UK Biobank (Ndyads = 177,411) and deCODE (Ndyads = 133,358), indicated 
minimal historical assortative mating for each of the Big Five traits (Estimated parental rg = .01-
.04; Figure 2C). Over past generations, birds of a feather have not flocked together: parents were 
only minimally more genetically similar in their personality traits, on average, than would be 
expected by chance, and far less genetically similar than has been estimated with respect to 
educational attainment (r = .37; Torvik et al., 2022). We present genetic correlations stratified by 
relationship and sample in Supplementary Table S35 and phenotypic parental similarity 
estimates in the deCODE sample (Npairs = 5,317) in Supplementary Figure S35. 
 

Mendelian randomization 
To test causality and directionality in associations between personality traits and 

biobehavioral outcomes, we applied Mendelian Randomization (MR) tests, which leverage SNPs 
as instrumental variables in a natural experiment (Sanderson et al., 2022). Per MR best practices, 
we identified a subset of 13 outcomes most likely to comport with core assumptions of this 
method (Supplementary Tables S36-S37), we tested associations across three MR estimators 
(weighted median, MR-CAUSE, and weighted mode), and we considered associations 
significant only if they were directionally consistent across all three estimators with 95% 
confidence/credibility intervals that excluded zero across at least two of the three (see 
Supplementary Text and Supplementary Figure 38 for complete information on MR 
methodology).  

 
We found plausible causal effects for 33 exposure-outcome pairings (Supplementary 

Table S38). Twenty-four analyses indicated effects of personality on biobehavioral outcomes, 
providing novel evidence that personality traits modify physical health – for example, 
extraversion increased COVID infection risk, conscientiousness decreased BMI and reduced 
likelihood of smoking initiation and frequency of spells in hospital, and neuroticism decreased 
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liability for a healthy aging/longevity factor. Furthermore, in line with theoretical perspectives 
that life experiences affect personality development (Roberts & Yoon, 2022), we found nine 
plausibly causal effects of biobehavioral outcomes on personality, encompassing broad multi-
trait effects of educational attainment, increased BMI, and smoking initiation on 
personality. Reassuringly, we found no evidence for MR associations between personality and 
three negative controls (birthweight, number of sisters, and number of brothers) that would only 
be associated with one’s own personality through intergenerational confounding (residual gene-
environment correlation). Our highly powered GWAS of each of the Big Five enabled these 
tests, providing valuable information on the potential causes and consequences of personality 
traits, which to date have been especially challenging to obtain using other methods (Grosz et al., 
2020; Lucas, 2023). Nevertheless, future work should further triangulate on the MR-based causal 
inferences reported here with additional methods and data that permit strong causal inference 
(e.g. natural experiments; Bailey et al., 2024; Hammerton & Munafò, 2021). 
 
Evaluating Confounding Caused by Gene-Environment Correlation 

Polygenic prediction within dizygotic twin pairs 
We used data from the Netherlands Twin Registry (Nfamilies= 2,956) and Twins Early 

Development Study (Nfamilies= 4,751) to predict personality traits within dizygotic twin pairs. 
These models predict personality from twin differences in PGIs, which we constructed from the 
primary EUR population GWAS meta-analysis, excluding the respective twin cohort used for 
PGI prediction. By holding family environment and parent genotype constant, and leveraging the 
randomness of intergenerational genetic transmission, these within-family comparisons 
substantially reduce genetic confounding associated with population stratification and assortative 
mating that may be present in population-level GWAS (Malanchini et al., 2024; Nivard et al., 
2021; Selzam et al., 2019; Veller & Coop, 2024).  

 
For all Big Five traits in both cohorts, within-twin-pair PGI differences robustly predicted 

the respective personality trait, with indistinguishable magnitude from population-level PGI 
prediction (Mean within-family β = 100.9% of population-level β, Figure 4B). This similarity 
between methods suggests no detectable confounding in population-level genetic effects on 
personality. This is in stark contrast with the notable predictive attenuation found in sibling PGI 
comparisons for other behavioral traits, such as educational attainment (mean within/population 
predictive strength ~60%), cognitive ability (~80%; Okbay et al., 2022; Tan et al., 2024), and 
externalizing psychopathology (~75%; Karlsson Linnér, 2021).  

 
Direct and indirect genetic effects on personality 
We further tested for confounding using a complimentary method. We leveraged parent-

offspring data from deCODE (N = 34,506) to decompose population-level PGI prediction into 
direct effects (genetic variants passed down from parent to offspring) and indirect effects 
(parental genetic variants not transmitted to the offspring). Across the Big Five, direct effects 
accounted for 96.2% of variance in in population-level PGI prediction, on average (Figure 4; 
Supplementary Table S39), indicating that genetic effects on personality operated nearly 
exclusive through direct transmission from parent to offspring. Only for conscientiousness were 
non-transmitted genetic effects significantly predictive of offspring personality (explaining 8.1% 
of the total predicted effect, p = .01). Non-transmitted effects did not differ in magnitude across 
mothers and fathers (Supplementary Table S40). In comparison, for educational attainment, 
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only 75.1% of variance was explained by direct effects (Supplementary Table S39; Kong et al., 
2018). After controlling for indirect effects, PGI prediction of extraversion by the extraversion 
PGI was similar in magnitude to PGI prediction of educational attainment by the educational 
attainment PGI. Thus, for personality traits, we find a negligible role of parental genetic nurture. 

 
Figure 4. Evaluating environmental confounding in genetic associations with personality. In 
panel A, the magnitude of PGI prediction from the EUR population-level GWAS is presented for population-
level and within-family analyses in two cohorts: Netherlands Twin Registry (NTR) and Twins Early 
Development Study (TEDS). In panel B, the magnitude of total PGI prediction from the EUR population-level 
GWAS among offspring in the deCODE cohort (with significance asterisks below the corresponding bar) is 
decomposed into directly transmitted and indirectly transmitted (non-inherited, with significance asterisks 
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above the corresponding bar) genetic effects from parents (Supplementary Table S39). Comparison estimates 
for Educational Attainment (EA) come from a PGI constructed from the Okbay et al. (2022) GWAS of EA 
with deCODE and 23&Me cohorts held out. In panel C, h2

SNP estimates estimated with LDSC from the within-
family GWAS (“Wit.”) are presented alongside full EUR population-level GWAS (“Full pop.,” Table 1) and 
matched population-level (“Pop.”) GWAS in cohorts that contributed to within-family GWAS 
(Supplementary Table S42). rg below each pair of traits indicates their genetic correlation estimated with 
LDSC, with deviation from rg = 1 tested using a nested chi-square model in Genomic SEM. p-values above 
each pair of traits indicates results of a test for differences in heritability between population and within-family 
estimates. In all panels, error bars depict 95% confidence intervals and standard errors are in parentheses. ns = 
p ≥ .05. * = p < .05. ** = p < .01. *** = p < .001. 
 

Within-family genome-wide analyses  
To conduct a maximally stringent test of genetic confounding, we supplemented our 

population-level GWAS with a within-family GWAS for each Big Five trait. Within-family 
GWAS accounts for effects of confounding at the level of individual SNPs (Friedman et al., 
2021; Tan et al., 2024; Veller & Coop, 2024). To perform within-family GWAS, we assembled 
data across 12 contributing EUR cohorts (N = 31,544-50,725 across traits) that ascertained 
genetic data among family members using best-practices quality control (Tan et al., 2024), and 
we combined this with published within-family GWAS estimates of Neuroticism (Howe et al., 
2022) (Supplementary Table S41; Supplementary Figures S39-S43). 
 

For this within-family GWAS, LDSC-estimated h2SNP estimates ranged from 7.6% (SE = 
1.6%) for agreeableness to 13.4% (3.2%) for openness to experience, evincing comparable 
magnitudes to those reported for the complete meta-analyses of population GWAS (Figure 4; 
Supplementary Table S42). To maximize comparability between within-family and population-
level GWAS, we also estimated h2SNP using meta-analysis of population-level GWAS among the 
matched subset of 12 cohorts who contributed to the within-family GWAS (Figure 4). h2SNP 
comparisons across models, using p < .05 as a significance threshold to ensure identification of 
potential differences, indicated that for only openness to experience were matched population-
level h2SNP estimates significantly greater than within-family h2SNP estimates (19.4% vs 13.4%, p 
= .02). This observed difference was driven largely by an inflated population-level h2SNP estimate 
for openness to experience relative to the full meta-analysis, and was specifically attributable to 
the Estonian Biobank sample (Supplementary Table S41). In contrast, previously-reported 
comparisons for other social and behavioral traits, such as educational attainment, depression, 
and household income, indicate LDSC h2SNP is attenuated by ≥ 50% in within-family data (Tan et 
al., 2024). LDSC-estimated genetic correlations between within-family and population-level 
GWAS summary data averaged rg = .86 and were significantly less than 1.00 only for 
neuroticism (rg = .75, SE = .08, p < .001) and agreeableness (rg = .79, SE = .09, p = .03); these 
results indicate strong correspondence in genetic effect estimates between population-level and 
within-family analyses. The final piece of evidence for similarity between population-level and 
within-family genetic effects came from replication analyses of significant and suggestive effects 
(p < 1×10-5) from the full EUR population-level GWAS (excluding matched cohorts): on 
average, within-family estimates replicated at 95% the magnitude of population-level effect 
replication (see Supplementary Table S42 for complete details).  
 

Discussion 
In a major consortium effort assembling data from 46 cohorts covering 611K-1.14M 

EUR and AFR participants, we conducted highly-powered GWAS of each of the Big Five 
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personality traits, producing dramatic gains in the number of discovered loci, validating powerful 
and robust polygenic indices, and comprehensively characterizing genetic architecture, 
confounding, assortative mating, and widespread genetic associations with socially relevant 
behaviors, health, and important life outcomes. These results overhaul the state of scientific 
knowledge on the genetic etiology of variation in human personality, establishing a rigorous 
basis for genetic inference and a fundamental role of personality genetics in the human 
condition. 
 

Our results reveal that genetic associations with human personality are generalizable in 
several respects. Genetic effects on the Big Five are highly similar across geography, age groups, 
self-rated versus other-rated report, military service, and measurement instrument; furthermore, 
PGIs predicted personality traits with near-equivalent magnitude across the lifespan and in 
samples from different nations. Though the mechanisms by which genetic variance manifests in 
personality trait differences are sure to be numerous and complex, and may operate in part 
through dynamic developmental processes (Roberts & Jackson, 2008; Scarr & McCartney 1983), 
this observed similarity in genetic architecture and PGI prediction across groups suggests that 
widespread genetic inference is nonetheless possible. One key departure from this overall pattern 
pertains to agreeableness, which exhibited somewhat lower genetic correlations across 
geography and rater instrument, suggesting that mechanistic processes relating to this trait may 
be more varied and inference must be more contextualized.  

 
We also demonstrated that genetic effects on human personality are relatively 

unconfounded by environmental factors that are shared across family members, including 
uncontrolled population stratification, assortative mating, and dynastic effects, each of which can 
inflate estimates of genetic effects (Veller & Coop, 2024). PGIs constructed using weights 
derived from population-level GWAS predicted each of the Big Five traits at indistinguishable 
strength in a standard population-level analysis and within-DZ twin pair analyses that account 
for these confounds. Parent-offspring analyses indicated that nearly all prediction was 
attributable to directly inherited genetic variants, rather than indirect effects of non-transmitted 
parental genotype. With the exception of openness to experience, estimates of h2SNP based on 
population GWAS were indistinguishable from those based on within-family GWAS that 
accounts for confounding. Effect size replication for top independent loci was very similar 
among population-level versus within-family hold-out samples. Finally, our comparisons of 
genetic correlations across relatives indicate that there has been minimal assortative mating on 
personality traits across recent generational time, extending decades of phenotypic research on 
romantic partner similarity (e.g. Horwitz et al., 2022; McCrae et al., 2008). Research in social 
science genomics has indicated that environmental sources of confounding play a major role in 
population-level GWAS of traits such as educational attainment, income, and cognitive 
performance (Howe et al., 2022; Okbay et al., 2022; Tan et al., 2024), introducing considerable 
challenge in obtaining estimates of direct genetic effects for these traits. In contrast, for 
personality, the lack of confounding indicates that population-level GWAS estimates 
overwhelmingly reflect direct genetic effects.  

 
Functional genomic analyses and biological annotation indicated that despite their only 

modest genetic intercorrelations, genetic effects on each of the Big Five occur via overlapping 
molecular and cellular systems; for example, the prefrontal cortex was implicated in the genetics 
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of each trait aside from agreeableness. Analyses also provide little support for neurobiological 
theories of the Big Five that posit trait-differentiated serotonergic and dopaminergic etiologies 
(Carver & Miller, 2006; DeYoung et al., 2021; Depue & Collins, 1999). Single cell gene 
expression data integrated with our GWAS suggests there is no straightforward reductive 
mapping from broad, multifaceted personality traits to specific neuron types. However, the 
availability of these high powered GWAS combined with ever-expanding access to temporal and 
spatial brain gene expression data will enable future developmental and system-specific analysis 
of neural personality etiology. Each of the Big Five demonstrated strong enrichment in protein 
truncating variant intolerant gene-sets specifically expressed in brain cells, suggesting that 
genetic variants with strong effects on personality are selected against (i.e. undergo negative 
selection), which is at odds with evolutionary theories that posit genetic variation in personality 
is solely maintained by inconsistent and varying selection pressures on personality that are in 
aggregate directionally neutral (balancing selection) (Penke & Jokela, 2016). Future research 
will be needed to further clarify the relative contributions of negative and balancing selection to 
variation in human personality traits.  
 

Key limitations point to focal areas for future research. First, our within-family GWAS 
meta-analysis, while the largest of personality to date, was small compared to the population 
GWAS meta-analysis. Collection of additional within-family data, especially intergenerational 
family units (Davies et al., 2024) will provide further leverage to accurately and precisely 
identify loci indexing direct genetic effects. Fine mapping and experimental designs (e.g., 
Sanchez-Roige et al., 2023) will also be necessary to identify the causal variants within the 
identified loci. Second, we examined genetic correlations across only broad stratifying variables, 
and only among EUR and AFR individuals. More fine-grained sex- and age- stratified analyses 
and stratification by more expansive ancestral and cultural backgrounds will further refine 
inferences about the generalizability and differentiation of genetic effects on personality. Finally, 
we focused only on the very broad Big Five personality traits. Research with more granular 
personality trait data (e.g., of specific behavioral tendencies; Mõttus et al., 2017) will provide 
greater specificity of inference and permit more sophisticated multivariate analysis of the genetic 
patterning of personality trait structure. 

 
Much of the scientific value of studying personality stems from its applicability to nearly 

all aspects of the lives that people lead. We extend this tenet by linking heritable variation in 
personality traits to core mental and physical health outcomes, labor market performance, and 
reproduction, with differentiated patterns that implicate certain traits (e.g. conscientiousness) as 
especially relevant to certain classes of outcomes (e.g. health behaviors). The genetics of 
personality also predict patterns of everyday behavior: how and when a person responds to 
surveys, where they move throughout their lives, and even the impression they make on others in 
a single interview session. Personality traits are highly stable over time (Bleidorn et al., 2022) 
and are resistant to simple experimental manipulation (Briley et al., 2018). Causal inference with 
respect to personality’s associations afforded by robust MR analyses is therefore especially 
valuable. MR results implicate personality traits as both causes and consequences of a range of 
health conditions. Given the pervasive relevance of personality to human experience, researchers 
across scientific fields will benefit from incorporating personality traits into models and theories 
when predicting and explaining biopsychosocial outcomes. 
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